Copied to
clipboard

?

G = C42.171D10order 320 = 26·5

171st non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.171D10, C10.342- (1+4), C4⋊Q89D5, C4.37(D4×D5), (C4×D5).13D4, C20.69(C2×D4), C4⋊C4.122D10, D10.82(C2×D4), D10⋊Q847C2, C4.D2026C2, C42⋊D525C2, (C2×Q8).143D10, Dic5.93(C2×D4), C10.98(C22×D4), Dic5⋊Q826C2, C20.23D425C2, (C4×C20).209C22, (C2×C10).268C24, (C2×C20).101C23, D10.13D445C2, (C2×D20).177C22, (Q8×C10).135C22, C22.289(C23×D5), D10⋊C4.49C22, C55(C23.38C23), (C2×Dic5).140C23, (C4×Dic5).167C22, (C22×D5).240C23, C2.35(Q8.10D10), (C2×Dic10).194C22, C10.D4.165C22, (C2×Q8×D5)⋊12C2, C2.71(C2×D4×D5), (C5×C4⋊Q8)⋊10C2, (C2×Q82D5).7C2, (C2×C4×D5).151C22, (C5×C4⋊C4).211C22, (C2×C4).217(C22×D5), SmallGroup(320,1396)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.171D10
C1C5C10C2×C10C22×D5C2×C4×D5C2×Q8×D5 — C42.171D10
C5C2×C10 — C42.171D10

Subgroups: 990 in 270 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×12], C22, C22 [×10], C5, C2×C4, C2×C4 [×6], C2×C4 [×17], D4 [×6], Q8 [×10], C23 [×3], D5 [×4], C10, C10 [×2], C42, C42, C22⋊C4 [×10], C4⋊C4 [×4], C4⋊C4 [×6], C22×C4 [×5], C2×D4 [×3], C2×Q8 [×2], C2×Q8 [×7], C4○D4 [×4], Dic5 [×2], Dic5 [×4], C20 [×2], C20 [×6], D10 [×2], D10 [×8], C2×C10, C42⋊C2, C22⋊Q8 [×4], C22.D4 [×4], C4.4D4 [×2], C4⋊Q8, C4⋊Q8, C22×Q8, C2×C4○D4, Dic10 [×6], C4×D5 [×4], C4×D5 [×8], D20 [×6], C2×Dic5, C2×Dic5 [×4], C2×C20, C2×C20 [×6], C5×Q8 [×4], C22×D5, C22×D5 [×2], C23.38C23, C4×Dic5, C10.D4 [×6], D10⋊C4 [×10], C4×C20, C5×C4⋊C4 [×4], C2×Dic10, C2×Dic10 [×2], C2×C4×D5, C2×C4×D5 [×4], C2×D20, C2×D20 [×2], Q8×D5 [×4], Q82D5 [×4], Q8×C10 [×2], C42⋊D5, C4.D20, D10.13D4 [×4], D10⋊Q8 [×4], Dic5⋊Q8, C20.23D4, C5×C4⋊Q8, C2×Q8×D5, C2×Q82D5, C42.171D10

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C22×D4, 2- (1+4) [×2], C22×D5 [×7], C23.38C23, D4×D5 [×2], C23×D5, C2×D4×D5, Q8.10D10 [×2], C42.171D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 37 11 27)(2 28 12 38)(3 39 13 29)(4 30 14 40)(5 21 15 31)(6 32 16 22)(7 23 17 33)(8 34 18 24)(9 25 19 35)(10 36 20 26)(41 159 51 149)(42 150 52 160)(43 141 53 151)(44 152 54 142)(45 143 55 153)(46 154 56 144)(47 145 57 155)(48 156 58 146)(49 147 59 157)(50 158 60 148)(61 102 71 112)(62 113 72 103)(63 104 73 114)(64 115 74 105)(65 106 75 116)(66 117 76 107)(67 108 77 118)(68 119 78 109)(69 110 79 120)(70 101 80 111)(81 136 91 126)(82 127 92 137)(83 138 93 128)(84 129 94 139)(85 140 95 130)(86 131 96 121)(87 122 97 132)(88 133 98 123)(89 124 99 134)(90 135 100 125)
(1 139 145 113)(2 114 146 140)(3 121 147 115)(4 116 148 122)(5 123 149 117)(6 118 150 124)(7 125 151 119)(8 120 152 126)(9 127 153 101)(10 102 154 128)(11 129 155 103)(12 104 156 130)(13 131 157 105)(14 106 158 132)(15 133 159 107)(16 108 160 134)(17 135 141 109)(18 110 142 136)(19 137 143 111)(20 112 144 138)(21 88 41 76)(22 77 42 89)(23 90 43 78)(24 79 44 91)(25 92 45 80)(26 61 46 93)(27 94 47 62)(28 63 48 95)(29 96 49 64)(30 65 50 97)(31 98 51 66)(32 67 52 99)(33 100 53 68)(34 69 54 81)(35 82 55 70)(36 71 56 83)(37 84 57 72)(38 73 58 85)(39 86 59 74)(40 75 60 87)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 117 11 107)(2 106 12 116)(3 115 13 105)(4 104 14 114)(5 113 15 103)(6 102 16 112)(7 111 17 101)(8 120 18 110)(9 109 19 119)(10 118 20 108)(21 62 31 72)(22 71 32 61)(23 80 33 70)(24 69 34 79)(25 78 35 68)(26 67 36 77)(27 76 37 66)(28 65 38 75)(29 74 39 64)(30 63 40 73)(41 94 51 84)(42 83 52 93)(43 92 53 82)(44 81 54 91)(45 90 55 100)(46 99 56 89)(47 88 57 98)(48 97 58 87)(49 86 59 96)(50 95 60 85)(121 157 131 147)(122 146 132 156)(123 155 133 145)(124 144 134 154)(125 153 135 143)(126 142 136 152)(127 151 137 141)(128 160 138 150)(129 149 139 159)(130 158 140 148)

G:=sub<Sym(160)| (1,37,11,27)(2,28,12,38)(3,39,13,29)(4,30,14,40)(5,21,15,31)(6,32,16,22)(7,23,17,33)(8,34,18,24)(9,25,19,35)(10,36,20,26)(41,159,51,149)(42,150,52,160)(43,141,53,151)(44,152,54,142)(45,143,55,153)(46,154,56,144)(47,145,57,155)(48,156,58,146)(49,147,59,157)(50,158,60,148)(61,102,71,112)(62,113,72,103)(63,104,73,114)(64,115,74,105)(65,106,75,116)(66,117,76,107)(67,108,77,118)(68,119,78,109)(69,110,79,120)(70,101,80,111)(81,136,91,126)(82,127,92,137)(83,138,93,128)(84,129,94,139)(85,140,95,130)(86,131,96,121)(87,122,97,132)(88,133,98,123)(89,124,99,134)(90,135,100,125), (1,139,145,113)(2,114,146,140)(3,121,147,115)(4,116,148,122)(5,123,149,117)(6,118,150,124)(7,125,151,119)(8,120,152,126)(9,127,153,101)(10,102,154,128)(11,129,155,103)(12,104,156,130)(13,131,157,105)(14,106,158,132)(15,133,159,107)(16,108,160,134)(17,135,141,109)(18,110,142,136)(19,137,143,111)(20,112,144,138)(21,88,41,76)(22,77,42,89)(23,90,43,78)(24,79,44,91)(25,92,45,80)(26,61,46,93)(27,94,47,62)(28,63,48,95)(29,96,49,64)(30,65,50,97)(31,98,51,66)(32,67,52,99)(33,100,53,68)(34,69,54,81)(35,82,55,70)(36,71,56,83)(37,84,57,72)(38,73,58,85)(39,86,59,74)(40,75,60,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,117,11,107)(2,106,12,116)(3,115,13,105)(4,104,14,114)(5,113,15,103)(6,102,16,112)(7,111,17,101)(8,120,18,110)(9,109,19,119)(10,118,20,108)(21,62,31,72)(22,71,32,61)(23,80,33,70)(24,69,34,79)(25,78,35,68)(26,67,36,77)(27,76,37,66)(28,65,38,75)(29,74,39,64)(30,63,40,73)(41,94,51,84)(42,83,52,93)(43,92,53,82)(44,81,54,91)(45,90,55,100)(46,99,56,89)(47,88,57,98)(48,97,58,87)(49,86,59,96)(50,95,60,85)(121,157,131,147)(122,146,132,156)(123,155,133,145)(124,144,134,154)(125,153,135,143)(126,142,136,152)(127,151,137,141)(128,160,138,150)(129,149,139,159)(130,158,140,148)>;

G:=Group( (1,37,11,27)(2,28,12,38)(3,39,13,29)(4,30,14,40)(5,21,15,31)(6,32,16,22)(7,23,17,33)(8,34,18,24)(9,25,19,35)(10,36,20,26)(41,159,51,149)(42,150,52,160)(43,141,53,151)(44,152,54,142)(45,143,55,153)(46,154,56,144)(47,145,57,155)(48,156,58,146)(49,147,59,157)(50,158,60,148)(61,102,71,112)(62,113,72,103)(63,104,73,114)(64,115,74,105)(65,106,75,116)(66,117,76,107)(67,108,77,118)(68,119,78,109)(69,110,79,120)(70,101,80,111)(81,136,91,126)(82,127,92,137)(83,138,93,128)(84,129,94,139)(85,140,95,130)(86,131,96,121)(87,122,97,132)(88,133,98,123)(89,124,99,134)(90,135,100,125), (1,139,145,113)(2,114,146,140)(3,121,147,115)(4,116,148,122)(5,123,149,117)(6,118,150,124)(7,125,151,119)(8,120,152,126)(9,127,153,101)(10,102,154,128)(11,129,155,103)(12,104,156,130)(13,131,157,105)(14,106,158,132)(15,133,159,107)(16,108,160,134)(17,135,141,109)(18,110,142,136)(19,137,143,111)(20,112,144,138)(21,88,41,76)(22,77,42,89)(23,90,43,78)(24,79,44,91)(25,92,45,80)(26,61,46,93)(27,94,47,62)(28,63,48,95)(29,96,49,64)(30,65,50,97)(31,98,51,66)(32,67,52,99)(33,100,53,68)(34,69,54,81)(35,82,55,70)(36,71,56,83)(37,84,57,72)(38,73,58,85)(39,86,59,74)(40,75,60,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,117,11,107)(2,106,12,116)(3,115,13,105)(4,104,14,114)(5,113,15,103)(6,102,16,112)(7,111,17,101)(8,120,18,110)(9,109,19,119)(10,118,20,108)(21,62,31,72)(22,71,32,61)(23,80,33,70)(24,69,34,79)(25,78,35,68)(26,67,36,77)(27,76,37,66)(28,65,38,75)(29,74,39,64)(30,63,40,73)(41,94,51,84)(42,83,52,93)(43,92,53,82)(44,81,54,91)(45,90,55,100)(46,99,56,89)(47,88,57,98)(48,97,58,87)(49,86,59,96)(50,95,60,85)(121,157,131,147)(122,146,132,156)(123,155,133,145)(124,144,134,154)(125,153,135,143)(126,142,136,152)(127,151,137,141)(128,160,138,150)(129,149,139,159)(130,158,140,148) );

G=PermutationGroup([(1,37,11,27),(2,28,12,38),(3,39,13,29),(4,30,14,40),(5,21,15,31),(6,32,16,22),(7,23,17,33),(8,34,18,24),(9,25,19,35),(10,36,20,26),(41,159,51,149),(42,150,52,160),(43,141,53,151),(44,152,54,142),(45,143,55,153),(46,154,56,144),(47,145,57,155),(48,156,58,146),(49,147,59,157),(50,158,60,148),(61,102,71,112),(62,113,72,103),(63,104,73,114),(64,115,74,105),(65,106,75,116),(66,117,76,107),(67,108,77,118),(68,119,78,109),(69,110,79,120),(70,101,80,111),(81,136,91,126),(82,127,92,137),(83,138,93,128),(84,129,94,139),(85,140,95,130),(86,131,96,121),(87,122,97,132),(88,133,98,123),(89,124,99,134),(90,135,100,125)], [(1,139,145,113),(2,114,146,140),(3,121,147,115),(4,116,148,122),(5,123,149,117),(6,118,150,124),(7,125,151,119),(8,120,152,126),(9,127,153,101),(10,102,154,128),(11,129,155,103),(12,104,156,130),(13,131,157,105),(14,106,158,132),(15,133,159,107),(16,108,160,134),(17,135,141,109),(18,110,142,136),(19,137,143,111),(20,112,144,138),(21,88,41,76),(22,77,42,89),(23,90,43,78),(24,79,44,91),(25,92,45,80),(26,61,46,93),(27,94,47,62),(28,63,48,95),(29,96,49,64),(30,65,50,97),(31,98,51,66),(32,67,52,99),(33,100,53,68),(34,69,54,81),(35,82,55,70),(36,71,56,83),(37,84,57,72),(38,73,58,85),(39,86,59,74),(40,75,60,87)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,117,11,107),(2,106,12,116),(3,115,13,105),(4,104,14,114),(5,113,15,103),(6,102,16,112),(7,111,17,101),(8,120,18,110),(9,109,19,119),(10,118,20,108),(21,62,31,72),(22,71,32,61),(23,80,33,70),(24,69,34,79),(25,78,35,68),(26,67,36,77),(27,76,37,66),(28,65,38,75),(29,74,39,64),(30,63,40,73),(41,94,51,84),(42,83,52,93),(43,92,53,82),(44,81,54,91),(45,90,55,100),(46,99,56,89),(47,88,57,98),(48,97,58,87),(49,86,59,96),(50,95,60,85),(121,157,131,147),(122,146,132,156),(123,155,133,145),(124,144,134,154),(125,153,135,143),(126,142,136,152),(127,151,137,141),(128,160,138,150),(129,149,139,159),(130,158,140,148)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
002900
0043900
00613032
00400911
,
3290000
090000
0032000
0003200
0031890
0031809
,
9320000
18320000
0010192733
0032283534
003402222
0034342222
,
3290000
2390000
00282200
00371300
003402222
00173219

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,2,4,6,40,0,0,9,39,1,0,0,0,0,0,30,9,0,0,0,0,32,11],[32,0,0,0,0,0,9,9,0,0,0,0,0,0,32,0,3,3,0,0,0,32,18,18,0,0,0,0,9,0,0,0,0,0,0,9],[9,18,0,0,0,0,32,32,0,0,0,0,0,0,10,32,34,34,0,0,19,28,0,34,0,0,27,35,22,22,0,0,33,34,22,22],[32,23,0,0,0,0,9,9,0,0,0,0,0,0,28,37,34,1,0,0,22,13,0,7,0,0,0,0,22,32,0,0,0,0,22,19] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C···4H4I4J4K4L4M4N5A5B10A···10F20A···20L20M···20T
order12222222444···44444445510···1020···2020···20
size111110102020224···4101020202020222···24···48···8

50 irreducible representations

dim111111111122222444
type+++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2D4D5D10D10D102- (1+4)D4×D5Q8.10D10
kernelC42.171D10C42⋊D5C4.D20D10.13D4D10⋊Q8Dic5⋊Q8C20.23D4C5×C4⋊Q8C2×Q8×D5C2×Q82D5C4×D5C4⋊Q8C42C4⋊C4C2×Q8C10C4C2
# reps111441111142284248

In GAP, Magma, Sage, TeX

C_4^2._{171}D_{10}
% in TeX

G:=Group("C4^2.171D10");
// GroupNames label

G:=SmallGroup(320,1396);
// by ID

G=gap.SmallGroup(320,1396);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,100,675,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽